

Entrance Examination for April 2012 Enrollment Graduate School of Advanced Sciences of Matter, Hiroshima University

Department of Quantum Matter (Engineering Field)

[1] Electromagnetism

- 1. Consider a solid conducting sphere A with rac B with inner radius b (Fig. 1). The center of of A is fixed at a positive value and that of B dielectric constant of vacuum is ϵ_0 . r is the ray system.
 - (1) Give the direction and the magnitude electric potential V(r) at a point betwee density on the surface of A is σ .
 - (2) Draw a graph of the magnitude of the as a function of r.
 - (3) Give σ , when the electric potential of field $\mathbf{E}(r)$ and the electric potential V specific value of V_1 .
 - (4) Give the capacitance C for A and B.
 - (5) Show that the electric potential V(r) is fies Laplace's equation. Since the syntaplacian in the spherical polar coord $\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial}{\partial r}).$
- 2. Consider a cylindrical conductor placed on is l. A current with a current density j = sufficiently long and the effect of both end vacuum is μ_0 .
 - (1) Give the magnitudes and the direction conductor and the field $\mathbf{H}_o(r)$ outside the z axis.

Another conductor having the same diamet the first one to make a circuit as shown in I magnetic field inside of the conductors and neglected.

- (2) Give the magnetic flux Φ through the sisting of these conductors.
- (3) Give the self inductance L of the circ

Entrance Examination for April 2012 Enrollment Graduate School of Advanced Schences of Matter, Hiroshima University Department of Quantum Matter (Engineering Field)

0

[2] Quantum Mechanics

Consider the ground state of a mass m in a potential V(x) that at x < 0, zero for 0 < x < Lconstant value of U for x > L,

$$V(x) = \begin{cases} +\infty & \text{for } x < 0 \\ 0 & \text{for } 0 < x < 0 \end{cases}$$

$$U \quad \text{for } x > 0$$

The ground state energy E has tween zero and the potential U

- 1. Write down the time independi $\psi(x)$ with energy eigenvalue $F_{k_1}^{-1}$
- 2. Give the boundary condition a t
- 3. Find a wavefunction $\psi_1(x)$ that x = 0 and x = L and satisfies
- 4. Give the boundary condition for
- 5. Find a wavefunction $\psi_2(x)$ th E < U and satisfies the bound
- . 6. Give the boundary conditions
- 7. For a specific value of $U = U_0$ at $E = U_0/2$. Use the boundar is given by

Entrance Examination for April 2012 Enrollment Graduate School of Advanced Sciences of Matter, Hiroshima University

Department of Quantum Matter (Engineering Field)

[3] Semiconductor E

Consider the drift motion of electrons in a of motion for the drift velocity v(t) at time t

$$\frac{dv(t)}{dt} = \frac{eF}{m^*} \quad v(t) \tag{a}$$

Here, e and m^* are the elementary charge and is a constant. Let F be a non-zero constant a

- 1. Find v(t) for $t \ge 0$ by solving equation
- 2. For large t, v(t) approaches an asym
- 3. Draw a graph of v(t) for $t \geq 0$. In th
- 4. Express the electron mobility μ usin
- 5. Give the relation between the electric with an electron density of n.
- 6. Explain the physical meaning of the

Quantum mechanically, the wave nature of electrons rank be considered. Let us assume the following relation between the wavenumber k and the eigenenergy E of electrons;

$$E = E_0 + \frac{\hbar^2}{2m^*} (k - k_0)^2$$
 (b).

Here, $\hbar = h/(2\pi)$ with h being the Planck constant and h_1 and h_2 are a constant of energy and constant of wavenumber, respectively.

- 7. Give the relation between E and the
- 8. The particle-like motion described the wavepacket of the electron. In wavenumber k_C is given by v = dc frequency ω and the wavenumber l relation between the central wavenumber of v as a function of k_C .
- 9. Using the equation $dk_C/dt = G/\hbar$ for external force G, derive the first term

