ID Number M

Entrance Examination for Master's Course, 2012 April Enrollment

Department of Quantum Matter

Department of Semiconductor Electronics and Integration Science

Graduate School of Advanced Sciences of Matter

Hiroshima University

MATHEMATICS

August 22, 2011, 10:30~12:00

Notices

(1) This he able timely deaths following sheets		
(1) This booklet includes the following sheets.		
Question sheets (including this sheet)	2 pages	
Answer sheets	3 pages	
Memo sheet	1 page	
12 Tlear en thus mablems [1]~[2]		4
T		
1)-		a a
F		
		l l
<u> </u>		

(3) One answer sheet should be used for one problem. Write the problem number

Entrance Examination for April 2012 Enrollment Graduate School of Advanced Sciences of Matter, Hiroshima University

Department of Quantum Matter, Department of Semiconductor Electronics and Integration Science

MATHEMATICS

[1] Answer the following questions on the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x - y + 3}{x - y}.$$

- (1) Find the general solution.
- (2) Find the solution which satisfies the conditions x = 0 and y = 1.
- (3) Draw the solution of (2) on the xy plane.
- [2] Answer the following questions.

(1) Suppose that any two-dimensional real vector $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ is expressed as

$$\vec{x} = c_a \vec{a} + c_b \vec{b} \tag{1}$$

in terms of two vectors

$$ec{a} = \left(egin{array}{c} a_1 \ a_2 \end{array}
ight), \qquad ec{b} = \left(egin{array}{c} b_1 \ b_2 \end{array}
ight),$$

with an appropriate set of scalar constants c_a and c_b . Write the term which expresses the property which two vectors \vec{a} and \vec{b} need to have.

(2) Find the two constants c_a and c_b which satisfy Eq. ①, when $\vec{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\vec{a} = \begin{pmatrix} \frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{pmatrix}$, and

$$\vec{b} = \begin{pmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix}.$$

- (3) Find the real part and the imaginary part of the complex number $e^{i\frac{\pi}{12}}$.
- [3] Answer the following questions where $\mathbf{k} = (k_x, k_y, k_z)$, $\mathbf{r} = (x, y, z)$, and $r = |\mathbf{r}|$.
 - (1) Compute the gradient ∇e^{ik·r}.
 - (2) Prove that $\frac{\partial r}{\partial x} = \frac{x}{r}$, where $r \neq 0$.
 - (3) Compute the divergence $\operatorname{div} \frac{\mathbf{r}}{r^3}$, where $r \neq 0$.
 - (4) Evaluate

$$\int \nabla \cdot (\frac{\mathbf{r}}{-3}) \, \mathrm{d}V,$$

where V_a is the spherical area whose center is at the origin and whose radius is a.

2