

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題 Graduate School of Advanced Science and Engineering(Master's Course),Hiroshima University Entrance Examination Booklet (General Selection)

(2024年1月25日実施 / January 25, 2024)

試験 科目 Subject 輸送機器環境工学 (専門科目 I) Vehicle and Environmental

Systems Engineering I

プログラム Program 輸送・環境システムプログラム Transportation and Environmental Systems Program

受験番号 Examinæ's Number

M

数学 Mathematics

問題1 以下の問いに答えよ。

- (1) 不定積分 $\int x(\log x)^2 dx$ を求めよ。
- (2) 定積分 $\int_{-\pi/2}^{\pi/2} \cos x \cos 2x \, dx$ を求めよ。
- (3) 常微分方程式 $\frac{dy}{dx} = 3\frac{y^2}{x^2}$ の一般解を求めよ。
- (4) $\mathbf{A} = \begin{bmatrix} -3 & -2 & -4 \\ 4 & 3 & 4 \\ 2 & 2 & 3 \end{bmatrix}$ のとき、 \mathbf{A} の固有値を求めよ。
- (5) $F = e^{yz} i e^{zx} j + xyk$ のとき、 $\nabla \times F$ を求めよ。ただし、i, j, k は x, y, z 軸方向の単位ベクトルである。

Question 1 Answer the following questions.

- (3) Find the general solution for the ordinary differential equation $\frac{dy}{dx} = 3\frac{y^2}{x^2}$.
- (4) When $\mathbf{A} = \begin{bmatrix} -3 & -2 & -4 \\ 4 & 3 & 4 \\ 2 & 2 & 3 \end{bmatrix}$, find the eigenvalues of \mathbf{A} .
- (5) When $F = e^{yz} i e^{zx} j + xyk$, find $\nabla \times F$, where i, j and k show the unit vectors in x, y and z axis directions.

Mathematics

問題 2 Fig. 2.1 に示すように、S を閉曲線 C によって囲まれた面積とするとき、導関数を有する任意関数 $F(x,y)=F_x(x,y)i+F_y(x,y)j$ に対して、2 次元の Gauss の発散定理

$$\iint_{S} \nabla \cdot \mathbf{F} \, dS = \int_{C} \mathbf{F} \cdot \mathbf{n} \, dl \tag{2.1}$$

が成り立つ。ただし, $n=n_xi+n_yj$ は C 上の外向き単位法線ベクトル,dl は C の線素である。また,i,j はそれぞれ x,y 軸方向の単位ベクトルである。Fig. 2.2 に示すように,曲線 C_1 ,および,直線 y=0 で囲まれた平面を考える。以下の問いに答えよ。

(1) 曲線 C_1 上の点の位置ベクトル $r_1(x,y)=xi+yj$ が (2.2) 式で与えられるとき,F=yj として (2.1) 式右辺の積分を行い,平面の面積 S を求めよ。

$$x = \frac{1}{2}(u - \sin u), \ y = \frac{1}{2}(1 - \cos u) \ (0 \le u \le 2\pi)$$
 (2.2)

(2) 平面上の任意の点の位置ベクトル r(x,y)=xi+yj が (2.3) 式で表されるとき,平面上の面素 $dS=\left|\frac{\partial r}{\partial u} imes\frac{\partial r}{\partial v}\right|$ dudv を求めよ。

$$x = (u - \sin u)v, \ y = (1 - \cos u)v \ \left(0 \le u \le 2\pi, \ 0 \le v \le \frac{1}{2}\right)$$
 (2.3)

(3) 小問(2)の結果をもとに(2.1)式左辺の積分を行い,(2.1)式が成り立つことを示せ。

Fig. 2.1

Fig. 2.2

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題

	ريهاغ تستيار يسو	10 '	135 t . t	* #	TT: T	T. 1
4-1						
,						
*						
.						
		12				
₩						
					,	
					, in	
					}	
					7-	
		= 1	=			
(0)		1.	.1			
(2)		au	dv,			= +
	=		_		\leq	(2.3)
*						
7 ==						
		Entrance Evernir	nation Booklet ((General Selection	`	
		EMILIANCE EXAITIII	iation dooriet (7 〒1月25日宝	施 / January 25, 2024)
	3.00 ← 10 ← 10 ← 10 ← 10 ← 10 ← 10 ← 10 ←				十1月23日夫	ль / January 23, 2024)
試験	輸送機器環境工学		輸送・環境シス	テムプログラム	受験悉号	

			(1 ~ / 3 = 0 1 . / /	
科目 Subject Veh	前送機器環境工学 (専門科目 I) nicle and Environmental systems Engineering I	プログラム Program	輸送・環境システムプログラム Transportation and Environmental Systems Program	受験番号 Examinee's Number	М

数学 Mathematics

Question 2 As shown in Fig. 2.1, when S is an area surrounded by a closed curve C the two-dimensional divergence theorem of Gauss

 $\iint_{S} \nabla \cdot \mathbf{F} \, dS = \int_{C} \mathbf{F} \cdot \mathbf{n} \, dl \tag{2.1}$

holds for the arbitrary vector function $F(x,y) = F_x(x,y)i + F_y(x,y)j$ with continuous derivatives, where $n - n_x i + n_y j$

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題 Graduate School of Advanced Science and Engineering(Master's Course),Hiroshima University

Entrance Examination Booklet (General Selection)

数学

Mathematics

問題 3 x(t) に関する常微分方程式

$$x''(t) + 4x'(t) + 5x(t) = f(t), \quad x(0) = x(\pi/2) = 0$$
(3.1)

について以下の問いに答えよ。ここで、f(t) はt に関する任意の関数である。

- (1) (3.1) 式の解 x(t) を求めよ。
- (2) f(t) = 1 のとき、x(t) を求めよ。

Question 3 Answer the following questions for the ordinary differential equation with respect to x(t):

$$x''(t) + 4x'(t) + 5x(t) = f(t), \quad x(0) = x(\pi/2) = 0.$$
(3.1)

Here, f(t) is an arbitrary function with respect to t.

- (1) Find the solution x(t) for eq. (3.1).
- (2) Find the solution x(t) when f(t) = 1.

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題 Graduate School of Advanced Science and Engineering(Master's Course),Hiroshima University Entrance Examination Booklet (General Selection)

(2024年1月25日実施 / January 25, 2024)

試験 科目 Subject 輸送機器環境工学 (専門科目 I) Vehicle and Environmental Systems Engineering I

	(— · — ·
	輸送・環境システムプログラム
プログラム	Transportation and
Program	Environmental Systems
	Program

受験番号 Examinee's M Number

力学 Dynamics

問題 1 質量m の物体が長さl の索で吊り下げられた振り子がある。索の重さは無視できる。傾角 θ は微小と仮定する。重力加速度をg とするとき、次の問いに答えよ。

(1) 物体が質点であるとき、傾角 θ に関する運動方程式を求めよ。座標系は、Fig. 1.1 に従うものとする (y) は鉛直下 向きを正とする)。

	(2)-	物体が半級。の球でなるしき	個名 A に関する運動方程する求め	ト 応煙玄け	Fio 12 に従う	kのとする (vは
	(3)					
						j
<u></u>	· ,					
A					<i>A</i> ,	1
Cir.	-					*
	•					i
£						

鉛直下向きを正とする)。 m

物体が質点と球の場合のそれぞれについて、振り子の運動周期を求めよ。さらに、それらの式を用いて、 $\alpha < l$ のとき、運動周期に及ぼす αl の影響について議論せよ。

Fig. 1.1

Fig. 1.2

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題 Graduate School of Advanced Science and Engineering(Master's Course),Hiroshima University Entrance Examination Booklet (General Selection)

(2024年1月25日実施 / January 25, 2024)

			(2027 -	L 1 1/1 7/2 14 24	: 川田 / January 25, 2024/
試験 科目 Subject	輸送機器環境工学 (専門科目 I) Vehicle and Environmental	プログラム Program	輸送・環境システムプログラム Transportation and Environmental Systems Program	受験番号 Examinee's Number	M
					,
). N			6		i
					i [
					b
1					
			,		
力学 (3)Dynami					٤

問題 2 回転軸が同一直線上にある二つの一様な円板 (円板 1 および円板 2) がある。円板 1 は質量 M, 半径 r であ ,角速度 $2\omega_0$ で回転している。円板 2 は質量 2M, 半径 2r であり,角速度 ω_0 で回転している。この二つの円板を接触させる と,二つの円板は滑らずに共通の角速度 ω_1 で回転した。この時,以下の問いに答えよ。

- (1) 円板1および円板2の回転軸回りの慣性モーメン を求めよ。
- (2) 接触後の角速度 ωι を求めよ。 接触によって失われた運動エネルギーを求めよ。

次ページへ続く。 Continued on the following page.

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題 Graduate School of Advanced Science and Engineering(Master's Course),Hiroshima University Entrance Examination Booklet (General Selection)

(2024年1月25日実施/January 25, 2024)

試験	輸送機器環境工学
試験	(専門科目 I)
科目	Vehicle and Environmental
Subject	Systems Engineering I

				<u> </u>	
プログラム Program	輸送・環境システムプログラム Transportation and Environmental Systems Program	受験番号 Examinee's Number	M		

力学 Dynamics

問題 3 Fig. 3.1 に示すように、区間 AC に等分布荷重 q を受ける単純支持はりがある。はりの長さはL である。曲げ剛性は EI とする。このはりについて以下の問いに答えよ。

- (1) はり AB の自由物体図を描け。
- (2) 全ての支点反力を求めよ。

か、社と断力の、中心でよって、「「図を図示社トーをだ」」 立画が結を図由に引動さること

Fig. 3.1

1	i•	<u> </u>				
				,		
					Γ	
l. was a				-		
						
/ [**	-10				
		2				
) <u> </u>						
7 <u>2</u>						
	\					
1)	r	j	<u> </u>			
۵/		Ži.	,			
/0						
3)						
4)						
4)		»				_
4)	,	>= 				
5) 6)	_		-			
4) 5) 6)		>-				
5) 6)	,	<u></u>				
4) 5) 6)		\frac{1}{2}				

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題 Graduate School of Advanced Science and Engineering(Master's Course),Hiroshima University Entrance Examination Booklet (General Selection)

(2024年1月25日実施 / January 25, 2024)

試験 輸送機器環境工学 (専門科目 II)

Subject Vehicle and Environmental Systems Engineering II

常送・環境システムプログラム プログラム Transportation and Environmental Systems Program Program

受験番号 Examinee's Number

小論文 Short essay

問題1 風力発電システムの開発と運用を考える。開発において考慮すべき、流体力学および材料力学に関わる事柄をそれぞれ1つ挙げ、それらについて論ぜよ。また、デジタル技術を用いてシステムの運用を効率化する方法を1つ挙げ、論ぜよ。必要に応じて、図を用いても差し支えない。

Question 1 Consider the development and operation of a wind power generation system. Point out and discuss one issue related to fluid

The state of the s