広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題

問題用紙

Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University Entrance Examination Booklet (General Selection)

Question Sheets

(2024年1月25日実施 / January 25, 2024)

	社会基盤環境工学
試験科目	(専門科目 I)
Subject	Civil and Environmental
	Engineering I

		(202	24 平 1 万 2 5 日天地	1 January	20, 202
	プログラム Program	社会基盤環境工学 Civil and Environmental Engineering	受験番号 Examinee's Number	M	11
,	* .*	T 0.00 (11.20)			

試験時間:9時00分~11時30分 (Examination Time: From 9:00 to 11:30)

受験上の注意事項

- (1) 問題用紙は表紙を含み18枚,解答用紙は表紙を含み8枚あります.
- (2) これは問題用紙です. 解答は別冊の解答用紙に記入してください.
- (3) 問題用紙の表紙及び解答用紙の全頁の指定した箇所に、受験番号を記入してください.
- (4) この冊子はばらしてはいけません. 一部でもばらけてしまった場合には, 直ちに試験監督に伝えて指示に従うこと

			F-2 7 2	10,		
1971 FL						
_						
,						
)						
					<u> </u>	
)						
<u> </u>				×		
0)						
Ô.			~			
0)						
•					-	
	}					
	3,	Į·-				
	},	<i>I</i>				
	},	<i>I</i>				
	},	<i>1</i> ··				
	},	1				
	},	Į —				
	},	<i>I</i> ··				
	},	<i>P</i> ··				
	},	P**				
	· · · · · · · · · · · · · · · · · · ·	P**				
·	<i></i>					
	· · · · · · · · · · · · · · · · · · ·	J		<u></u>		
	→,	J		1		
		J		1		
	<u>→</u> ,	J		1	2	
	→ ;	J		2		
	→ ;	J · · ·		<u></u>		
	\(\frac{1}{2}\)	J **-		2		

相違してはならない.

1問につき解答田紙1枚を使田すること解答が書ききれたいときには同じ田紙の重面を利用してもよい

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題 Graduate School of Advanced Science and Engineering(Master's Course),Hiroshima University Entrance Examination Booklet (General Selection)

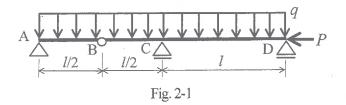
(2024年1月25日実施 / January 25, 2024)

試験科目 Subject	社会基盤環境工学 (専門科目 I) Civil and Environmental Engineering I	プログラム Program	社会基盤環境工学 Civil and Environmental Engineering	科目 Specialized subject	構造工学 Structural Engineering
-----------------	--	------------------	---	------------------------------	--------------------------------

問題1

単純ばりに集中荷重 P_1 , P_2 , …, P_m , …, P_n が作用する場合に、カステリアーノの第2定理が成立することを示せ.

Question 1

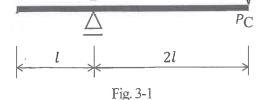

Derive Castigliano's second theorem for a simply supported beam subjected to concentrated loads, $P_1, P_2, \dots, P_m, \dots$, and P_n .

問題2

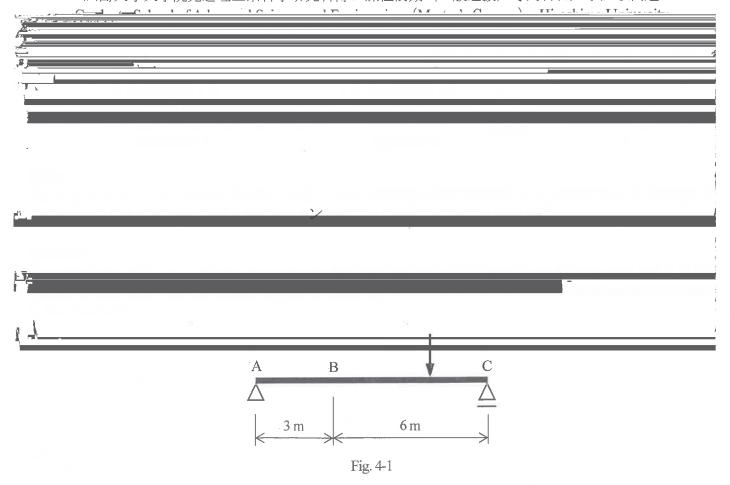
Fig. 2-1 に示すはりが,等分布荷重 q と軸力 P を受ける.はりの軸力図,せん断力図および曲げモーメント図を描けなお,A は回転支点,B は中間ヒンジ,C と D は移動支点である.

Question 2

The beam shown in Fig. 2-1 is subjected to a uniformly-distributed load q and an axial force P. Assume A is a pin-support, B is an internal hinge, and C and D are rollers. Draw the axial force diagram, shear force diagram, and bending moment diagram of the beam.


問題3

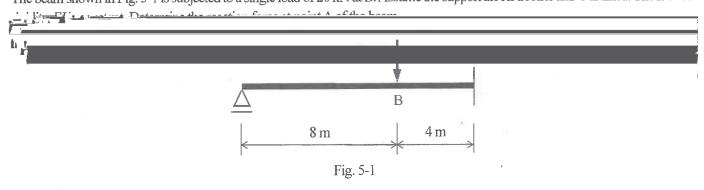
 Fio_3-1 に示すはりが、C に集中荷重P を受ける。A は回転支点、B は移動支点である。また、曲げ剛性EI は一定で


ある. A におけるたわみ角を求めよ

Question 3

The beam shown in Fig. 3-1 is subjected to a single load *P* at C. Assume the support at A is a pin, and B is a roller. The flexural rigidity *EI* is constant. Determine the slope at point A of the beam.

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題



問題5

Fig. 5-1 に示すはりが、B に $20\,\mathrm{kN}$ の集中荷重を受ける。A は移動支点、C は固定支点である。また、曲げ剛性 EI は一定である。A における支点反力を求めよ。

Question 5

The beam shown in Fig. 5-1 is subjected to a single load of 20 kN at B. Assume the support at A is a roller and C is fixed. The flexural

問題6

両端ヒンジの柱におけるオイラー座屈荷重 P_E は π^2EI/l^2 となることを示せ、ここで、柱の長さは l、曲げ剛性は EI である、

Question 6

For a pin-ended column, show that Euler's buckling load P_E is $\pi^2 EI/l^2$, in which l is the length of the column and EI is the flexural rigidity.

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題 Graduate School of Advanced Science and Engineering(Master's Course),Hiroshima University Entrance Examination Booklet (General Selection)

(2024年1月25日実施 / January 25, 2024)

試験科目	社会基盤環境工学 (専門科目 I)	プログラム	社会基盤環境工学 Civil and	科目	コンクリート工学
t <u>; </u>					
And the second of the second o				-	
	li.i.e.				
	-		=		

問題2

フレッシュコンクリートに関する,以下の問に答えよ.

- (1) コンクリートのスランプについて説明せよ.
- (2) レイタンスについて説明せよ.
- (3) プラスティック収縮について説明せよ.

Question 2

Answer the following questions regarding fresh concrete.

- (1) Explain the slump of concrete.
- (2) Explain the laitance.
- (3) Explain the plastic shrinkage.

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題

Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University Entrance Examination Booklet (General Selection)

(2024年1月25日実施 / January 25, 2024)

社会基盤環境工学 試験科目 (専門科目 I) Subject Civil and Environme Engineering I	プログラム Program	社会基盤環境工学 Civil and Environmental Engineering	科目 Specialized subject	コンクリート工学 Concrete Engineering
---	------------------	---	------------------------------	----------------------------------

問題3

硬化コンクリートに関する,以下の問に答えよ.

- (1) コンクリートの強度に及ぼす養生の影響について説明せよ.
- (2) コンクリートの圧縮強度におけるセメント水比説について説明せよ.
- (3) アルカリシリカ反応における、反応性骨材のペシマム量について説明せよ.

Question 3

Answer the following questions regarding hardened concrete.

- (1) Explain the curing effects on the strength of concrete.
- (2) Explain the cement-water ratio law for the compressive strength of concrete.
- (3) Explain the pessimum content of reactive aggregate in alkali silica reaction.

問題4	
鉄筋スンクリートに埋設された鋼材を腐食させる代表的な劣化要因を2つ挙げ、	それぞれの要因によって鋼材腐食
77	
بالمحارف والطفقي بطافعاك وفروجين ببيبري ويبرز الباري بدروان	

問題5

コンクリートの自己収縮, 乾燥収縮の発生メカニズムについて説明せよ. また, それぞれの収縮に大きな影響を及ぼす要因を挙げて説明せよ.

Question 5

Explain the mechanisms of autogenous shrinkage and drying shrinkage of concrete. Also, explain factors affecting each shrinkage.

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題 Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University Entrance Examination Booklet (General Selection)

<u>, ,</u>		/0004 /E	<u> </u>	th LJ 05 000
	社会基盤環境工学			
	Engineering I	Engineering		
}				
			ンクリー	-
		 社会基盤環境工学	科目	コンカリート工学

試験科目

プログラム Program

Civil and Environmental

Specialized subject

コンクリート工学

Concrete Engineering

Subject Civil and Environmental 曲げ破壊荷重

問題6

曲げモーメントの作用を受ける鉄筋コンクリートはりについて、以下の耐荷重を計算するときに用いるコンクリートおよび鉄筋の構成則を、図を用いて説明せよ、なお、(3)については、高強度コトや高強度鉄筋を使用した場合の変化も示せ、

- (1) 曲げひび割れ発生荷重
- (2) 鉄筋降伏荷重

(3)

Ouestion 6

Write the constitutive models of concrete and steel with figures for calculating the following capacities of a reinforced concrete beam subjected to albeinding rhoment. For (3), show the changes in the models when using high-strength concrete and steel, too.

- (1) Flexural cracking capacity
- (2) Steel yielding capacity
- (3) Ultimate capacity

問題7

鉄筋コ ー は のせん断破壊について, 以下の機構を説明せよ.

(1) スターラップを有しない棒部材のせん断抵抗機構

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題 Graduate School of Advanced Science and Engineering(Master's Course),Hiroshima University Entrance Examination Booklet (General Selection)

(2024年1月25日実施 / January 25, 2024)

社会基盤環境工学 社会基盤環境工学 科目 環境衛生工学 Civil and Coniton and Environmental

問題1

- (1) 次の専門用語を説明せよ.
 - (a) 酸度
 - (b) 温度成層
 - (c) 青潮
- (2) 陽性対照実験と陰性対照実験の意味と意義を説明せよ.
- (3) 水域において水中での藻類による光合成が pH に与える影響とその機構を説明せよ.
- (4) 水域において有機汚染物質は疎水性であるほど食物連鎖の上位に位置する生物に蓄積されやすい理由を説明せよ.

Question 1

- (1) Explain the following technical terms.
 - (a) Acidity
 - (b) Thermal stratification
 - (c) Blue tide
- (2) Explain the meaning and necessity of positive and negative controls for experiments.

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題 Graduate School of Advanced Science and Engineering(Master's Course),Hiroshima University Entrance Examination Booklet (General Selection)

(2024年1月25日実施 / January 25, 2024)

試験科目	社会基盤環境工学 (専門科月 I)	プログラム	社会基盤環境工学 Civil and	科目	環境衛生工学
The state of the s					
4	1				
	,				
1.					
_	1	<u>, 5</u>			
)-, <u>,</u>				
	1				
. 1		*			

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題 Graduate School of Advanced Science and Engineering(Master's Course),Hiroshima University Entrance Examination Booklet (General Selection)

(2024年1月25日実施 / January 25, 2024)

社会基盤環境工学 (専門科目 I) プログラ Subject Civil and Environmental Engineering I	Specialized .	環境衛生工学 Sanitary and Environmental Engineering
--	---------------	---

_	 即次子,100 宁和帝		
-			
		-3	
,			
			-
			80
)			
)			

- (2) 急速ろ過法と緩速ろ過法の浄化原理の違いを100字程度で説明せよ.
- (3) オゾンを用いた消毒の長所と短所を100字程度で説明せよ.

Question 3

Answer the following questions regarding drinking water treatment.

2024年4月入学(April 2024 Admission) 広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題

	Sahari of Advousad Sain	noo and Environmen	(Mastonia Comman)	Llirochima I Inis	operater
196					- · · · · · · · · · · · · · · · · · · ·
				X.	
日					
<u> </u>					Au _{3.}
11 M	-)				:
1					

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題 Graduate School of Advanced Science and Engineering(Master's Course),Hiroshima University Entrance Examination Booklet (General Selection)

(2024年1月25日実施 / January 25, 2024)

社会基盤環境工学 (専門科目 I) Subject Civil and Environmental Engineering I 社会基盤環境工学 プログラム Civil and Program Environmental Engineering

科目 Specialized subject 環境衛生工学 Sanitary and Environmental Engineering

問題6

大気中の二酸化炭素と平衡関係にある純水の pH を求めよ、主要な関係式および数値は以下の通りである、なお、 $[H'] = [HCO_3]$ を仮定してよい、

Question 6

Calculate the pH of pure water in equilibrium with carbon dioxide in the atmosphere. The related equations and values are as follows. Assume that $[H^+] = [HCO_3^-]$.

$$K_{H} = \frac{\left[\mathrm{CO}_{2aq}\right]}{\left[\mathrm{CO}_{2gas}\right]}$$

$$K = \frac{\left[\text{CO}_{2\text{aq}}\right]}{\left[\text{H}_2\text{CO}_3\right]}$$

$$K_{H_2CO_3} = \frac{\left[H^+\right]\left[HCO_3^-\right]}{\left[H_2CO_3\right]}$$

$$\log[\mathrm{CO}_{2\mathrm{gas}}] = -3.4$$

$$\log K_H = -1.5$$

$$\log K = 2.8$$

$$\log K_{H_2CO_3} = -3.5$$

問題7

微生物生態について以下の問に答えよ.

- (1) 以下の用語を説明せよ.
 - (a) 遺伝子の水平伝播
 - (b) GenBank
 - (c) アガロースゲル電気泳動
- (2) PCR 法における3つの反応ステップをそれぞれ説明せよ。

			. 1, 11 - 1 - 1 - 1 - 1 - 1 - 1	W/3 19 400 /-	が日 かた。大学と日 1 L L
77	4.1]			
]					
7					
(=					
<u>k</u> – <u>H-</u>					

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題 Graduate School of Advanced Science and Engineering(Master's Course),Hiroshima University Entrance Examination Booklet (General Selection)

	to a second		4. <u>P. P. P</u>	<u> </u>	2+/ / r
· —					
4.					
1		_	_	_	
<u> </u>					
ψ ,					
ψ,			11 시 甘 dbree 1호 구 쓰		
= 5 ms	社会基盤環境工学	-0. 20-)	社会基盤環境工学	科目	- 大田学
試験科目	(専門科目 I)	プログラム	Civil and	Specialized	水理学
Subject	Civil and Environmental	Program	Environmental	subject	Hydraulics
	Engineering I		Engineering		

問題1

二次元流体運動についての式(1.1)から式(1.4)に関する以下の問に答えよ.

- (1) 式(1.1)は任意のx方向の運動方程式である。各項の物理的な意味を説明せよ。
- (2) 流れ関数ψ, ポテンシャル関数φが存在するための流れ場の条件をそれぞれ説明せよ.
- (3) φが存在するとき、粘性は流体の運動に影響しないことを示せ.
- (4) ϕ が存在するとき、定常流れでは式(1.4)で表される全水頭Hがどこでも一定である とを示せ.

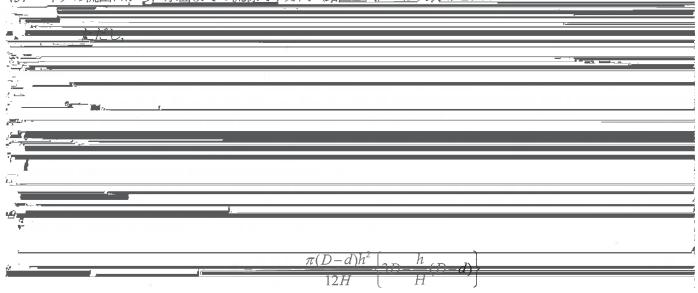
Question 1

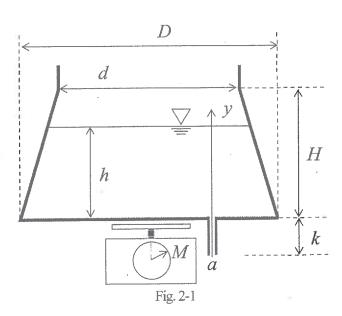
Answer the following questions about Eqs. (1.1) – (124) for two-dimensional fluid motion.

- (1) The equation of motion in an arbitrary x direction is expressed as Eq. (1.1). Explain the physical meaning of each term.
- (2) Explain the condition of the flow field when the stream $\frac{\partial \Phi}{\partial x}$ we exists. Explain the condition when the potential function exists.
- (3) Show that viscosity does not affect the fluid motion when ψ and ϕ exist.
- (4) Show that the total hydraulic head H in Eq. (1.4) is constant everywhere for steady flow, when ψ and ϕ exist.

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題 Graduate School of Advanced Science and Engineering(Master's Course),Hiroshima University Entrance Examination Booklet (General Selection)

(2024年1月25日実施 / January 25, 2024)


	社会基盤環境工学
試験科目	(専門科目 I)
Subject	Civil and Environmental
	Engineering I


社会基盤環境工学 プログラム Civil and Program Environmental Engineering	科目 Specialized subject	水理学 Hydraulics
---	------------------------------	-------------------

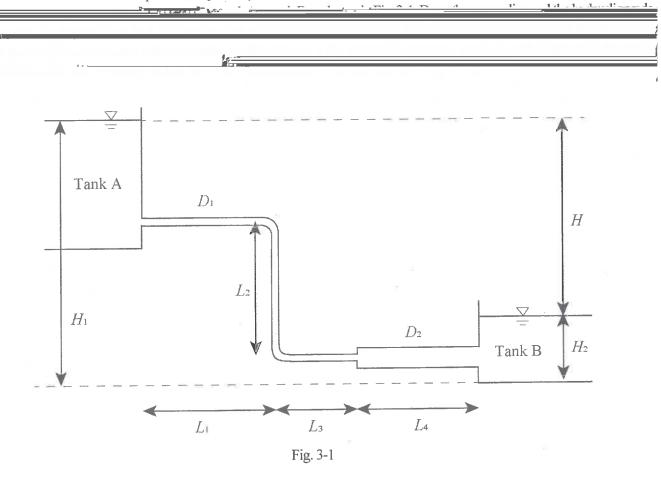
問題2

Fig. 2-1 のような底面の内径 D,上面の内径 d の円錐形のフラスコがはかりに載せられている。フラスコには水深 h (<H)の水が入っており,長さ k,断面積 a のパイプから水が流出している。エネルギー損失がなく,a はフラスコの断面積に比べて十分小さいとして,次の間に答えよ。ただし,水の密度はp,重力加速度はg であり,水深 h のときのフラスコ内の水の体積 V は式(2.1)で与えられる。

- (1) 水深hの時のパイプの流出口から流出する流量を示せ.
- (2) 水深 h の時間変化を表す微分方程式を示せ.
- (3) パイプの流出口から、水面までの流線でy方向(鉛直上向)の圧力分布を図示せよ.

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題 Graduate School of Advanced Science and Engineering(Master's Course),Hiroshima University Entrance Examination Booklet (General Selection)

(2024年1月25日実施 / January 25, 2024)


試験科目 Subject	社会基盤環境工学 (専門科目 I) Civil and Environmental Engineering I	プログラム Program	社会基盤環境工学 Civil and Environmental Engineering	科目 Specialized subject	水理学 Hydraulics
-----------------	--	------------------	---	------------------------------	-------------------

問題3

- (1) 円管路における急拡損失係数が K_∞ = $(1-A_1/A_2)^2$ になることを説明せよ. ここで, A_1 は急拡前の断面積, A_2 は急拡後の断面積である.
- (2) Fig. 3-1 に示すようなタンク A からタンク B に水を送る円管路がある。このときのエネルギー線と動水勾配線をタンク A から管に沿った距離を横軸として図示せよ。ただし、管の摩擦損失係数を f, タンク A から管路への流入口での損失係数を K。曲がりでの損失係数を K。管路からタンク B への流出口での損失係数を K。D1 と D2 は細管と太管の直径とする。

Ouestion 3

(1) Show that the loss coefficient at a sudden expansion in a circular pipe is $K_{se}=(1-A_1/A_2)^2$, where A_1 and A_2 are cross-sectional areas before and after the sudden expansion, respectively.

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題 Graduate School of Advanced Science and Engineering(Master's Course),Hiroshima University Entrance Examination Booklet (General Selection)

(2024年1月25日実施 / January 25, 2024)

試験科目 Subject	社会基盤環境工学 (専門科目 I) Civil and Environmental Engineering I	プログラム Program	社会基盤環境工学 Civil and Environmental Engineering	科目 Specialized subject	水理学 Hydraulics
-----------------	--	------------------	---	------------------------------	-------------------

問題4

Fig. 4-1 に示す勾配 S の斜面を一定の厚さ δ で粘性の大きい油が流れている。油の粘性係数は μ である。以下の間に答えよ。

- (1) 高さzでの力のつり合い式を求めよ.
- (2) 流速分布 u を求めよ.
- (3) 単位幅当たりの流量を求めよ。

Question 4

An oil with high viscosity flows on a slope with gradient S, as shown in Fig. 4-1. The oil layer depth is δ . The viscosity of the oil is μ . Answer the following questions.

- (1) Write the equilibrium equation of the forces at depth z.
- (2) Find the velocity distribution u.
- (3) Find the flow rate per unit width.

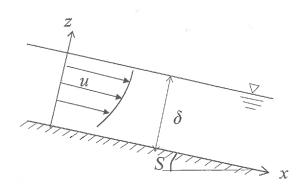


Fig. 4-1

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題 Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University Entrance Examination Booklet (General Selection)

(2024年1月25日実施 / January 25, 2024)

試験科目 Subject	社会基盤環境工学 (専門科目 I) Civil and Environmental Engineering I	プログラム Program	社会基盤環境工学 Civil and Environmental Engineering	科目 Specialized subject	水理学 Hydraulics
-----------------	--	------------------	---	------------------------------	-------------------

問題5

- (1) 開水路流れの分類について以下の語句を用いて説明せよ. [非定常流, 等流, 漸変流・急変流, 常流・射流, 層流・乱流]
- (2) 水路幅と勾配が一定の急勾配水路における水面形を描き、その特徴を以下の語句を用いて説明せよ. [等流水深, 限界水深, フルード数, 上流方向, 下流方向, 跳水]

Question 5

- (1) Explain the classification of open channel flows using the following terms.

 [unsteady flow, uniform flow, gradually and rapidly varied flows, sub- and super-critical flows, laminar and turbulent flows]
- (2) Draw the water surface profiles in a steep channel with constant gradient and uniform width, and explain the characteristics of water surface profiles using the following terms.

 [normal depth, critical depth, Froude number, upstream direction, downstream direction, hydraulic jump]

P46 p	<u> </u>
- 1-	
=	
diameter .	
Spr. II	
-	

Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University Entrance Examination Booklet (General Selection)

(2024年1月25日実施 / January 25, 2024)

			20		42
試験科目 Subject 問題 2	社会基盤環境工学 (専門科目 I) Civil and Environmental Engineering I	プログラム Program	社会基盤環境工学 Civil and Environmental Engineering	科目 Specialized subject	土木計画学 Infrastructure and Transportation Planning

日本の交通事故発生件数の推移を Table 2-1 に示す. 交通事故発生モデルは Y=a+bt+e, とする. こで、 Y_t は t年の交通事故発生件数、a、b はパラメータ、 e_t は誤差項である. 以下の間に答えよ.

- (1) 最小二乗法により, a, b を推定せよ.
- (2) 交通事故発生モデルを用いて、2003年、2008年、2013年、2018年、2022年の交通事故発生件数を推定せよ.
- (3) 交通事故発生モデルの重相関係数を計算せよ. 重相関係数に基づいて交通事故発生モデルの当てはまり度を評価せよ.
- (4) このモデルの限界を説明せよ.

Question 2

The time-series trend in the number of traffic accidents in Japan is shown in Table 2-1. The traffic accident model is assumed as

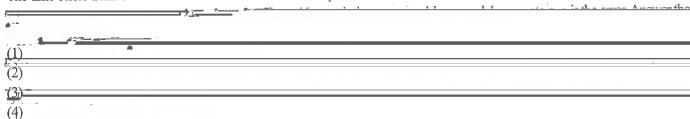


Table 2-1

Year	The number of traffic accidents in Japan (1,000 accidents)
2003	948
2008	766
2013	665
2018	431
2022	301

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題 Graduate School of Advanced Science and Engineering(Master's Course),Hiroshima University Entrance Examination Booklet (General Selection)

(2024年1月25日実施 / January 25, 2024)

試験科目 Subject	社会基盤環境工学 (専門科目 I) Civil and Environmental Engineering I	プログラム Program	社会基盤環境工学 Civil and Environmental Engineering	科目 Specialized subject	土木計画学 Infrastructure and Transportation Planning
-----------------	--	------------------	---	------------------------------	--

問題3

交通需要予測に関わる以下の問に答えよ

- (1) 四段階推定法について説明せよ.
- (2) 自然災害の影響を評価する場合、四段階推定法のどの段階を用いるか、その理由も併せて答えよ.
- (3) ライドシェアを検討する場合、四段階推定法のどの段階を用いるか、その理由も併せて答えよ.
- (4) 四段階推定法を実施する上で想定される課題を述べよ.

Question 3

Answer the following questions related to traffic demand forecasting.

- (1) Explain the four-step method.
- (2) Which step of the method is used to assess the impacts of a natural disaster? What is the reason for using that step?
- (3) Which step of the method is used to examine the ride sharing? What is the reason for using that step?
- (4) Explain the limitations of the four-step method.

問題 4

以下の専門用語について、それぞれ説明せよ.

- (1) 建ペい率
- (2) 技術的外部性
- (3) 国土形成計画
- (4) 市街化調整区域

Question 4

Explain the following technical terms.

- (1) building coverage ratio
- (2) technological externality
- (3) national spatial planning
- (4) urbanization control area

問題5

市街地火災について,以下の問に答えよ.

- (1) 市街地火災の特徴について、郊外の戸建て住宅の火災と比較しながら説明せよ.
- (2) 都市計画制度の中で、市街地火災の被害軽減効果のある制度を一つ挙げて、その内容を説明せよ.
- (3) 市街地火災の際の道路の役割を説明したうえで、その被害軽減の観点から望ましい市街地道路ネットワークについて説明せよ.

Ouestion5

Answer the following questions about urban fires.

(1) Explain the characteristics of fires in urban areas and compare them with those in detached houses in suburban areas.

The print are considered in the in the constant and the c

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題

問題用紙

Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University Entrance Examination Booklet (General Selection)

Question Sheets

(2024年1月25日実施 / January 25, 2024)

社会基盤環境工学 試験科目 (専門科目 II) Subject Civil and Environmental Engineering II	プログラム Program	社会基盤環境工学 Civil and Environmental Engineering	受験番号 Examinee's Number	M	ű.	
---	------------------	---	------------------------------	---	----	--

試験時間: 13 時 30 分~15 時 30 分 (Examination Time: From 13:30 to 15:30)

受験上の注意事項

- (1) 問題用紙は表紙を含み3枚、解答用紙は表紙を含み8枚あります.
- (2) これは問題用紙です. 解答は別冊の解答用紙に記入してください.
- (3) 問題用紙の表紙及び解答用紙の全頁の指定した箇所に、受験番号を記入してください.
- (4) この冊子はばらしてはいけません. 一部でもばらけてしまった場合には, 直ちに試験監督に伝えて指示に従うこと.
- (5) 全問に解答しなさい.
- (6) 問題用紙は解答用紙とともに回収します.
- (7) 問題中「図を書きなさい」という指示がある場合は、解答用紙に記入すること。
- (8) 質問あるいは不明な点がある場合は挙手をすること.

Notices

- (1) There are 3 question sheets and 8 answer sheets each including a cover sheet.
- (2) This examination booklet consists of only question sheets. Use the other booklet for answers.
- (3) Fill your examinee's number in the specified positions in both booklet covers and each answer sheet.
- (4) Do not disband this booklet. If the sheet has been disbanded accidentally, tell an invigilator and follow his/her instruction.
- (5) Answer all the questions.
- (6) Return the question sheets together with the answer sheets.
- (7) When you are required to draw a diagram, draw it on the answer sheet.
- (8) Raise your hand when you have any questions.

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題 Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University Entrance Examination Booklet (General Selection)

(2024年1月25日実施 / January 25, 2024)

試験科目 Subject	社会基盤環境工学 (専門科目 II) Civil and Environmental Engineering II	プログラム Program	社会基盤環境工学 Civil and Environmental Engineering	科目 Specialized subject	小論文 A Essay A
-----------------	--	------------------	---	------------------------------	------------------

問題

- (1) 社会基盤に対する要求は、それぞれの国・地域の社会的・経済的な状況によって異なる。ある国もしくは地域を例に挙げて、社会基盤の整備と維持管理に関する課題とその解決策を600字程度で論ぜよ。
- (2) 近年, 災害の被害を軽減する減災の重要性が高まっている. 減災に関して社会基盤環境工学はどのような貢献ができるのか、あなたの考えを400 字程度で述べよ.

Question

- (1) The requirements for infrastructure vary depending on the social and economic conditions by each country or region. Considering a country or region as an example, discuss the challenges and solutions for the development and maintenance of infrastructure, in about 300 words.
- (2) In recent years, disaster mitigation to reduce the damage caused by disasters has been becoming increasingly significant. Describe your ideas on what contributions can be made to disaster mitigation by civil and environmental engineering, in about 200 words.

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題 Graduate School of Advanced Science and Engineering(Master's Course),Hiroshima University Entrance Examination Booklet (General Selection)

(2024年1月25日実施 / January 25, 2024)

試験科目 Subject	社会基盤環境工学 (専門科目 II) Civil and Environmental Engineering II	プログラム Program	社会基盤環境工学 Civil and Environmental Engineering	科目 Specialized subject	小論文-B Essay B
-----------------	--	------------------	---	------------------------------	------------------

問題

大学院博士課程前期入学後の希望研究課題を記したうえで、希望研究課題に関して、研究の背景、先行研究の目的、 方法、成果、残された課題を整理して、1,600 字程度で記述せよ。なお、所定の書式に従って作成したレビュー論文 リストを参照してよい。

Question

After writing your desired research topic in the master's course, explain the background of the research by summarizing the