広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題

問題用紙

Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University Entrance Examination Booklet (General Selection)

Question Sheets

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題 Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University Entrance Examination Booklet (General Selection)

(2023年1月26日実施 / January 26, 2023)

	電気システム制御
試験科目	(専門科目I)
Subject	Electrical, Systems, and
±:	Control Engineering I
F1	

プログラム Program	電気システム制御 (Electrical, Systems, and Control Engineering) スマートイノベーション	受験番号 Examinee's Number	M	 5.
	(Smart Innovation)			

A-1

$$a,c$$
 を実数とする. $I=egin{pmatrix} 1&0&0\\0&1&0\\0&0&1 \end{pmatrix}, A=egin{pmatrix} a&a&-2\\-2&0&0\\-2&1&-1 \end{pmatrix}, b=egin{pmatrix} c\\1\\1 \end{pmatrix}$ とおく. また、1 は A の固有値であるとする.

- (1) a の値を求めよ.
- (2) Aの固有値と固有ベクトルをすべて求めよ。
- (3) c を用いて b を A の固有ベクトルの一次結合 (線形結合) で表せ、

$$(4)$$
 $x=egin{pmatrix} x_1 \ x_2 \ x_3 \end{pmatrix}$ に関する連立方程式 $(I-A)x=b$ が解をもつような c の値を求めよ.

Let
$$a$$
 and c be real numbers. Let $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ A = \begin{pmatrix} a & a & -2 \\ -2 & 0 & 0 \\ -2 & 1 & -1 \end{pmatrix}$ and $b = \begin{pmatrix} c \\ 1 \\ 1 \end{pmatrix}$.

Moreover, assume that 1 is an eigenvalue of A.

- (1) Find the value of a.
- (2) Find all the eigenvalues and eigenvectors of A.
- (3) Express b as a linear combination of eigenvectors of A by using c.
- (4) Find the value of c so that the system of equations (I A)x = b for $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ has a solution.

(Electrical Systems, and Control Engineering) スマートイノベーション

表す.

- 1. Find the limit $\lim_{x\to 0} \frac{\tan^2 x + \cos(\pi + x) + \cos(\pi x) + 2}{x^2}$.
- 2. Let a be a positive real number, and consider the integral $I(a) = \int_0^1 \frac{4 e^{ax}}{4 + e^{ax}} dx$.
 - (1) Find I(a). (2) Find the limit $\lim_{a\to\infty} I(a)$.
- 3. Consider the function $f(x,y)=x^2\int_0^y e^{-t}dt$. Let $g(x,y)=\frac{\partial f}{\partial x}(x,y)-\frac{\partial f}{\partial y}(x,y)+\frac{\partial^2 f}{\partial x^2}(x,y)$. Find the value of y satisfying g(1,y)=0.
- 4. Evaluate the double integral $\iint_D \log \frac{x^2}{y^3} dx dy$, where $D = \{(x,y) \mid 1 \le x \le 3, 1 \le y \le 3\}$, and $\log x$ denotes the natural logarithm of x.

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題 Graduate School of Advanced Science and Engineering(Master's Course),Hiroshima University Entrance Examination Booklet (General Selection)

(2023年1月26日実施 / January 26, 2023)

	電気システム制御	
試験科目	(専門科目I)	
Subject	Electrical, Systems, and	
	Control Engineering I	

プログラム	電気システム制御 (Electrical, Systems, and Control Engineering)	受験番号	M
Program	スマートイノベーション (Smart Innovation)	Examinee's Number	

A-3

図に示す回路において、以下のことを仮定する。

- ドット()は複素数表示を意味する。
- V は実効値 V, 角周波数 ω をもつ正弦波交流電圧源の電圧である。
- R は抵抗、L はインダクタンスである。 この回路について、抵抗 R を流れる電流 I を求めよ。

For the circuit shown in the figure, the followings are assumed:

- A dot () means the complex number expression.
- \dot{V} is a sinusoidal ac voltage source voltage with effective value V and angular frequency ω .
- \bullet R is a resistance, L is an inductance.

For this circuit, find the current \dot{I} that flows through the resistance R.

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題 Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University Entrance Examination Booklet (General Selection)

(2023年1月26日実施 / January 26, 2023)

試験科目 Subject	電気システム制御 (専門科目I) Electrical, Systems, and Control Engineering I	プログラム Program	電気システム帯御 (Electrical, Systems, and Control Engineering) スマートイノベーション (Smart Innovation)	受験番号 Examinee's Number	M
-----------------	--	------------------	--	---------------------------	---

A-4

- (1) 2種類の燃料 A, B を使用して熱量を生成する問題を考える. 燃料 A, B は 1[L] 使用することで,それぞれ 20[kJ], 30[kJ] の熱量を生成できるとする.このとき,燃料 A, B の 1[L] あたりの重量をそれぞれ 5[kg], 10[kg], 使用する燃料 A, B の容積を $x_A[L]$, $x_B[L]$ として,生成される熱量を最大化するための最適な x_A , x_B を計算するための線形計画問題を定式化せよ.ただし,燃料 A, B は合計重量 200[kg] まで,合計容積 25[L] まで使用できるものとする.
- (2) 次の線形計画問題を,シンプレックス法を用いて解け
- (1) Consider a problem of generating heat using two types of fuels A and B. Here, 1[L] of fuel A and 1[L] of fuel B can produce 20[kJ] and 30[kJ] of heat, respectively. The weights per 1[L] of fuels A and B are 5[kg] and 10[kg], respectively. Formulate a linear programming problem to calculate the optimal $x_A[L]$ and $x_B[L]$ to maximize the heat produced, where x_A and x_B are the volumes of fuels A and B used. Assume that fuels A and B can be used up to the total weight of 200 [kg] and the total volume of 25 [L].
- (2) Solve the following linear programming problem by using the simplex method.

	$\max_{k} \sum_{i=1}^{k} \frac{1}{2} \sum_{i=1}^{k} \frac{1}{2$			Control of the Contro	
			<u>-</u>		
7"	77	4		,	,
P	5.0			7	
(3)	,	(3)			-
-	minimize $z = 5 x_1 + 3 x_2 + x_3 $			r Zer 1	
P	$subject to 2x_1 + 4x_2 + x_3 = 5$			= 5	
=	$x_1 - 3x_2 + 2x_3 = 2$			= 2	

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題

問題用紙

Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University Entrance Examination Booklet (General Selection)

Question Sheets

(2023年1月26日実施 / January 26, 2023)

試験科目	電気システム制御
Subject	(専門科目 Ⅱ)
1	Electrical, Systems, and
	Control Engineering II

	(2023)	十1万20日天旭7	January 20	0, 4043)
	電気システム制御			
プログラム	(Electrical, Systems, and	受験番号		
	Control Engineering)	Examinee's	M	
Program	スマートイノベーション	Number	N.	
	(Smart Innovation)			

試験時間: 13 時 30 分~14 時 30 分 (Examination Time: From 13:30 to 14:30)

受験上の注意事項

- (1) 問題用紙は表紙を含み2枚、解答用紙は表紙を含み2枚あります。
- (2) 問題用紙及び解答用紙のそれぞれに、受験番号を記入してください。
- (3) これは問題用紙です。解答は別冊の解答用紙に記入してください。
- (4) 解答が書ききれないどきは、同じ用紙の裏面を利用しても構いません。ただし、その場合は「裏に続く」などと裏面に記載したことが分かるようにしておくこと。
- (5) 問題Bに解答しなさい。
- (6) 問題用紙は解答用紙とともに回収します。
- (7) 質問あるいは不明な点がある場合は手を挙げてください。
- (1) There are 2 question sheets and 2 answer sheets including a front sheet.
- (2) Fill in your examinee's number in the specified positions in this cover and each question and answer sheet.
- (3) This examination booklet consists of only question sheets. Use other separate sheets for answers.
- (4) If the space is exhausted, use the reverse side of the sheet and write down "to be continued" on the last line of the sheet.

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題 Graduate School of Advanced Science and Engineering(Master's Course),Hiroshima University Entrance Examination Booklet (General Selection)

(2023年1月26日実施 / January 26, 2023)

試験科目 Subject	電気システム制御 (専門科目 II) Electrical, Systems, and Control Engineering II	プログラム Program	電気システム制御 (Electrical, Systems, and Control Engineering) スマートイノベーション (Smart Innovation)	受験番号 Examinee's Number	M
以下のすべ	ての問題に解答しなさい。				
				2 makes	
(1)		(₂) ₀ ,	• • • • • • • • • • • • • • • • • • •		,
(3)			3		<u> </u>
A. II a)	1 (.12	·			1 4
	<u></u>	,			
i F			* * * * *		
1 Select of	ne technical term from the di	scinlines theories	or methodologies	vou have learned in	the field of electrical