2022年10月,2023年4月入学(October 2022 and April 2023 Admission) 広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題

問題用紙

(2022年8月25日実施/August 25, 2022)

試験	輸送機器環境工学
科目	(専門科目 I)
'''	Vehicle and Environmental
Subject	Systems Engineering I

輸送・環境システムプログラム Transportation and **Environmental Systems** Program

受験番号 M Examinee's Number

数学 Mathematics

問題1 以下の問いに答えよ。

(1) 不定積分
$$\int x^3 \log 3x \, dx$$
 を求めよ。

(2) 定積分
$$\int_{0}^{\infty} x^{2}e^{-2x} dx$$
 を求めよ。

$$(3)$$
 $f(x,y)=\log\sqrt{x^2+y^2}$ のとき, $\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}$ を求めよ。

(4) 常微分方程式
$$\frac{dy}{dx} = 3 + x + y$$
 の一般解を求めよ。

(5)
$$\mathbf{A} = \begin{bmatrix} 1 & -3 & -3 \\ -1 & 1 & -1 \\ 1 & 3 & 5 \end{bmatrix}$$
 のとき, \mathbf{A} の固有値を求めよ。

Answer the following questions.

- (1) Find the indefinite integral $\int x^3 \log 3x \, dx$.

(2) Find the integral
$$\int_{-\infty}^{\infty} x^2 e^{-2x} dx$$
.
(3) When $f(x,y) = \log \sqrt{x^2 + y^2}$, find $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$.

- Find the general solution for the ordinary differential equation $\frac{dy}{dx} = 3 + x + y$.
- (5) When $\mathbf{A} = \begin{bmatrix} 1 & -3 & -3 \\ -1 & 1 & -1 \\ 1 & 3 & 5 \end{bmatrix}$, find the eigenvalue of \mathbf{A} .

(2022年8月25日実施/August 25, 2022)

試験 科目 Subject	輸送機器環境工学 (専門科目 I) Vehicle and Environmental Systems Engineering I	プログラム Program	輸送・環境システムプログラム Transportation and Environmental Systems Program	受験番号 Examinee's Number	M
---------------------	--	------------------	--	------------------------------	---

数学 Mathematics

問題 2 曲面 S で囲まれた閉領域 V を考えるとき,連続な導関数を有する任意関数 ${m F}(x,y,z)$ に対して,Green の発散定理

$$\iiint_{V} \nabla \cdot \mathbf{F} \, dV = \iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS \tag{2.1}$$

が成り立つ。ただし, $n=n_xi+n_yj+n_zk$ は V の表面に取られた外向きの単位法線ベクトルであり,i,j,k は x,y,z 軸方向の単位ベクトルである。いま,Fig. 2.1,Fig. 2.2 に示すように,平面 z=2y,および,曲面 $z=x^2+y^2$ で囲まれた物体を考える。 以下の問いに答えよ。

- (1) 各面における単位法線ベクトルn を求めよ。
- (2) 平面と曲面の交線において、xとyの関係を示せ。
- (3) F=(0,0,z) とおき (2.1) 式の左辺を計算すると、物体の体積 V は $\frac{\pi}{2}$ となる。 (2.1) 式の右辺の積分を行い、(2.1) 式が成り立つことを示せ。

Fig. 2.1

Fig. 2.2

(2022年8月25日実施/August 25, 2022)

計論	輸送機器環境工学
科目	(専門科目 I)
Subject	Vehicle and Environmental
Subject	Systems Engineering I

プログラム Iransportation and	受験番号 Examinee's Number	M
----------------------------	------------------------------	---

数学 Mathematics

Question 2 When we consider a closed volume V surrounded by the surface S, the divergence theorem of Green

$$\iiint_{V} \nabla \cdot \mathbf{F} \, dV = \iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS \tag{2.1}$$

is satisfied for an arbitrary function F(x, y, z) with continuous derivatives, where $n = n_x i + n_y j + n_z k$ is an outward unit normal vector on the surface of V, and i, j and k show the unit vectors in x, y and z axis directions respectively. Fig. 2.1 and Fig. 2.2 show an object surrounded by the plane z = 2y, and the curved surface $z = x^2 + y^2$. Answer the following questions.

- (1) Find the unit vector n at each surface of the object.
- (2) Show the relation of x and y in the crossing line of the plane and the curved surface.
- (3) The volume of the object, V, becomes $\frac{\pi}{2}$ by the left side of eq. (2.1) when F = (0, 0, z), Show that eq. (2.1) holds, by carrying out the integration in the right side of the eq. (2.1).

(2022年8月25日実施/August 25, 2022)

試験 科目 Subject Subject	プログラム Program	輸送・環境システムプログラム Transportation and Environmental Systems Prooram	受験番号 Examinee's Number	M
د. مي				
	$y''(t)$ _	$y(t)$ $f(t)$ $(\omega_0 0)$ $y'(0)$		ŝ
数学 Mathematics				

問題

に関する常微分方程式

 $+\omega_0^2$

について以下の問いに答えよ。ただし,t=0 での初期条件をy(0), と記す。 常微分方程式 (3.1) の解 y(t) を求め,同次解と特解に分けて表せ。

- (2) $f(t) = a \sin \omega t \ (a, \omega : 定数)$ のとき、解 y(t) を求めよ。
- (3) 小問 で求めた解において ω ω_0 のときの解 y(t) を求めよ。

(2).

2022年10月, 2023年4月入学 (October 2022 and April 2023 Admission) 広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題 Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University

Entrance Examination Booklet (General Selection

(2022年8月25日実施/August 25, 2022)

M

試験 科目 Subject

輸送機器環境工学 (専門科目 I) Vehicle and Environmental Systems Engineering I

プログラム Program

輸送・環境システムプログラム Transportation and **Environmental Systems** Program

受験番号 Examinee's Number

力学 **Dynamics**

水平面とのなす角度 θ で石を投げた。重力加速度をg、空気抵抗を無視できるものと 問題 1 水平面上で、初速度 M問いに答えよ。

水平到達距離を求めよ。 同じ速度 10で鉛直上方に投げた時の最高点の高さと、小問(1)の水平到達距離が等しい時、角度を求めよ。

Question 1 The stone is thrown on the horizontal plane by initial speed, v_0 . Hence, angle between the thrown direction and the horizontal plane is θ . Answer the following questions. The gravity acceleration is denoted by g. Air drag can be neglected.

Obtain the horizontal flying distance.

2022年10月,2023年4月入学(October 2022 and April 2023 Admission) 広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題

(2022年8月25日実施/August 25, 2022)

試験	輸送機器環境工学
科目	(専門科目 I)
	Vehicle and Environmental
Subject	Systems Engineering I

プログラム Program	輸送・環境システムプログラム Transportation and Environmental Systems Program	受験番号 Examinee's Number	M
------------------	--	------------------------------	---

力学 Dynamics

問題3 水平軸のまわりに回転する輪軸がある(慣性モーメント:I, 輪の半径:2r, 軸の半径:r)。Fig. 3.1 に示すように、輪軸に2本の軽い糸がまかれ、それぞれの糸には等しい質量のおもり(質量:<math>m)が繋がれている。重力加速度をgとして、以下の問いに答えよ。

- (1) Fig. 3.1 に示すように糸の張力をそれぞれ T_1 , T_2 とする時、輪軸とそれぞれのおもりの運動方程式を求めよ。
- (2) 糸の張力 T₁ および T₂ を求めよ。

Question 3 There is a wheel and axle (moment of inertia: I, radius of the wheel: 2r, radius of the axle: r) which rotates around the horizontal axis. As shown in the Fig. 3.1, two light strings are recled around the wheel and axle, and a weight of equal mass (Mass: m) is connected with each string. Answer the following questions. The gravity acceleration is denoted by g:

(1) Obtain the motion equations of the wheel and axle and the two weights. Hence, the tensions of the strings are denoted by T_1 and T_2 .

Fig. 3.1

2022年10月,2023年4月入学(October 2022 and April 2023 Admission) 広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題

問題用紙

Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University Entrance Examination Booklet (General Selection)

Question Sheets

(2022年8月25日実施 / August 25, 2022)

試験 輸送機器環境工学	

試験時間: 13 時 30 分~16 時 30 分 (Examination Time: From 13:30 to 16:30)

受験上の注意事項

- (1) 問題用紙は表紙を含み10枚あります。
- (2) 問題用紙及び解答用紙のそれぞれに、受験番号を記入してください。
- (3) これは問題用紙です。解答は別冊の解答用紙に記入してください。
- (4) 解答が書ききれないときは、同じ用紙の裏面を利用しても構いません。ただし、その場合は「裏に続く」などと裏面に記載したことが分かるようにしておくこと。
- (5) 全問に解答しなさい。
- (6) 問題用紙は解答用紙とともに回収します。
- (7) 問題中「図に書きなさい」という指示がある場合は、解答用紙に記入すること。
- (8) 作図する場合、貸与する定規を使用しても差し支えない。
- (9) 質問あるいは不明な点がある場合は手を挙げてください。

Notices

- (1) There are 10 question sheets including a front sheet.
- (2) Fill in your examinee's number in the specified positions in this cover and each question and answer sheet.
- (3) This examination booklet consists of only question sheets. Use other separate sheets for answers.
- (4) If the space is exhausted, use the reverse side of the answer sheet and write down "to be continued" on the last line of the sheet.
- (5) Answer all the questions.
- (6) Return these question sheets together with the answer sheets.
- (7) If given the instruction to draw a diagram, draw it on the answer sheet.
- (8) You may use the approved ruler if you need.
- (9) Raise your hand if you have any questions.

		_					
#			<i>y</i> ;				
	hicle and Environmental						
fer							
1							
=							
-							とし,
試験	输送機器環境工学 	プ ロガニ).	輸送・環境シ	ント ステムプログ 	2022年8月 ^{ラム} 受験		
			Fro	nt view			
f		A	Fro	nt view	<i>V</i>		
. [Unii Jangdo 1	A	50°		<u>/</u>	V	
	Unii Joneshy)			nt view		J J	
				and murinos			A A
723 44 34 -				and murinos	-17.		Ã
1				and murinos	-17.		Ā
1	Edua Cal			and meiles			
1	Edua Cal			and meiles	A Marin		
	Edua Cal			and meiles			

(2022年8月25日実施/August 25, 2022)

試験 科目 Subject 輸送機器環境工学 (専門科目 II) Vehicle and Environmental Systems Engineering II

常送・環境システムプログラム プログラム Transportation and Program Environmental Systems Program

受験番号 Examinee's Number

流体力学 Fluid Mechanics

Question 1 As shown in Fig. 1.1, there is a rectangular container filled with water on a horizontal ground surface. A dimension of the container in the x-direction is B, and its dimension in the y-direction is the unit length. The water depth in the container is half the dimension of the container in the x-direction B/2. Then, as shown in Fig. 1.2, the container is tilted at an angle θ by pulling up the sidewall-2, while the bottom edge C of the sidewall-1 is touching on the ground surface. During and after tilting the container, the water has not spilled from the container. Then, wetted lengths of the sidewall-1 and sidewall-2 in the container's depth direction are denoted as L_1 and L_2 , respectively. Here, the density of water is denoted as ρ , and the gravity acceleration is denoted as g. Answer the following questions.

- (1) Find L_1+L_2 using B.
- (2) Find $L_1 L_2$ using B and θ .
- (3) Find the water-surface height H from the ground surface, using B and θ .
- (4) Find the horizontal force F_{h1} in the x-direction and the vertical force F_{v1} in the z-direction caused by the water pressure acting on the sidewall-
- (5) Find the moment M_{C1} around the bottom edge C of the sidewall-1 caused by the water pressure acting on the sidewall-1. Here, the positive

	Bird's view	Front view	Ī		
	A. D. Mary		1	7	
	Linit Length: 1				
	Wales 1972	(Horizontal)	(Wine	si 0/2	
		***		# # # # # # # # # # # # # # # # # # #	
				1	
	Bird's view			m-2 \	
	induvidi-1 Midewall-2		Edgwell-1	A	
			V	\	
	1-1-1-1-1			la 🗼	
	No. of the second				
,	War of the second		\	θ	
	Caronal nather	Brig			

(2022年8月25日実施/August 25, 2022)

試験 科目 Subject	輸送機器環境工学 (専門科目 II) Vehicle and Environmental Systems Engineering II	プログラム Program	輸送・環境システムプログラム Transportation and Environmental Systems Program	受験番号 Examinee's Number	M
---------------------	--	------------------	--	------------------------------	---

流体力学 Fluid Mechanics

問題 2 Fig. 2.1 に示すように、断面積aのノズルから吐出した噴流が、水平な地面に静止した土台(Base)の上面の曲面に沿って流れている。噴流は大気にさらされており、土台へ水平方向(x方向)に対する角度 θ_1 で流入し、角度 θ_2 で流出する。なお曲面との摩擦は無視でき、噴流の流速は不変、流れは定常と仮定する。いま流体の密度を ρ と表記し、大気圧は0とみなす。以下の問いに答えよ。

- (1) 噴流の流速がuである時、噴流が士台に及ぼす水平力 $f_{\mathbf{x}}$ (x方向に作用する力)を求めよ。
- (2) 噴流の流速がuである時,噴流が土台に及ぼす鉛直力 f_z (z方向に作用する力)を求めよ。
- (3) 噴流の流入角 θ_1 を0°, 噴流の流出角 θ_2 を90°とする時, 土台に作用する合力の方向 α を求めよ。
- (4) 十台の自重によれ、地面に作用する鉛直荷重を M とする(噴流の自重による鉛直荷重は無視できると仮定)。また十台と地

±1.	THE PART OF THE PA
7 7	ない
_	
_	a)
	面の間の静止摩擦係数を 0.1 とする。いま噴流の流入角 θ_1 を 30° ,噴流の流出角 θ_2 を 60° とする時,土台が x 軸方向へ動き出き) <u>各の</u> 時法の流声を使わずめ トースの圏 解窓内に関わる三角関数け計算サト (トー・ $\sin(30^\circ)=0.5$ $\cos(30^\circ)=0.87$)
-	
i,	
<u>.</u>	
	• • • • • • • • • • • • • • • • • • •

(2022年8月25日実施/August 25, 2022)

試験	輸送機器環境工学		輸送・環境システムプログラム	受験番号	
		- <u>Fa</u> .			
	· · · · · · · · · · · · · · · · · · ·				
-					
	Andrew In Fig. 1 & ajment				
_				1	0.
l		. ~			
-/4>					
(4)					
14 F 16 US			17		
5					,
			8'		
)					
				400000 PL9000	
	1				
1	ı				
3======================================					
F +					
* ,	the second second				
F					

(2022年8月25日実施/August 25, 2022)

試験 科目 Subject	輸送機器環境工学 (専門科目 II) Vehicle and Environmental Systems Engineering II	プログラム Program	輸送・環境システムプログラム Transportation and Environmental Systems Program	受験番号 Examinee's Number	M
---------------------	--	------------------	--	------------------------------	---

流体力学 Fluid Mechanics

問題3 ポテンシャル流れについて、以下の問いに答えよ。

(1) 複素速度ポテンシャル f が次のように表されるポテンシャル流れがある。但し、z (= x + iy, i = $\sqrt{-1}$) は複素数, κ (>0) は実定数とする。速度ポテンシャル ϕ ,流れ関数 ψ , (r,θ) 座標の速度 v_r , v_θ を示せ。

$$f = i\kappa \log z \tag{3.1}$$

- (2) 小問 (1) はどのようなポテンシャル流れか説明せよ。必要に応じて図を用いても良い。
- (3) 小問 (1) の流れについて、流れに沿った循環 Γ を求めよ。
- (4) 一様流速U において、循環 Γ を有する円柱(半径 α)周りの流れ場を考える。この流れの複素速度ポテンシャルfを示せ。
- (5) 小問 (4) の流れ場において、<u>循環がない場合($\Gamma=0$)</u>の円柱表面に作用する圧力を p_1 、<u>循環 Γ がある場合</u>の円柱 に作用する圧力を p_2 とする。それらの圧力差 Δp (= p_2-p_1)を求めよ。ここで、 $\alpha=1$ 、淀み点の圧力は p_0 、遠方場の圧力は p_∞ 、流体密度は ρ 、重力は無視できる。

Fig. 3.1

次ページへ続く。 Continued on the following page.

(2022年8月25日実施/August 25, 2022)

試験 科目 Subject	輸送機器環境工学 (専門科目 II) Vehicle and Environmental Systems Engineering II	プログラム Program	輸送・環境システムプログラム Transportation and Environmental Systems Program	受験番号 Examinee's Number	M
---------------------	--	------------------	--	------------------------------	---

流体力学 Fluid Mechanics

Question 3 Answer the following questions about potential flows.

(1) The potential flow has a complex velocity potential:

$$f = i\kappa \log z,\tag{3.1}$$

where $z = (x + iy, i = \sqrt{-1})$ is the complex number, $\kappa > 0$ is the real constant. Find the velocity potential, ϕ , the stream function, ψ , and the velocities, v_r and v_{θ} at the (r, θ) coordinates, respectively.

Fig. 3.1

次ページへ続く。 Continued on the following page.

(2022年8月25日実施/August 25, 2022)

試験	輸送機器環境工学
科目	(専門科目 II)
Subject	Vehicle and Environmental
Subject	Systems Engineering II

輸送・環境システムプログラ
Transportation and
Environmental Systems
Program

受験番号
Examinee's M
Number

材料力学 Material and Structural Mechanics

問題 1 Fig. 1.1 に示すように、張り出しはりが、点Cに集中荷重Pを受けている。はりの長さ、ヤング率はそれぞれ2L、

Fig. 1.1

次ページへ続く。 Continued on the following page.

(2022年8月25日実施/August 25, 2022)

試験 科目 Subject	輸送機器環境工学 (専門科目 II) Vehicle and Environmental Systems Engineering II	プログラム Program	輸送・環境システムプログラム Transportation and Environmental Systems Program	受験番号 Examinee's Number	М
---------------------	--	------------------	--	------------------------------	---

材料力学 Material and Structural Mechanics

問題 2 Fig. 2.1 に示すように両端を固定された棒がある。棒は 2 つの材料で構成されている。棒 AB のヤング率,線膨張係数,断面積,長さはそれぞれ E_1 , α_1 , S, L とする。棒 BC のヤング率,線膨張係数,断面積,長さはそれぞれ E_2 , α_5 , C, C とする。棒は点 C で連結している。この棒において 点 C に集中荷重 C が作用し,かつ温度変化 C が生じた時について,以下の問いに答えよ。

- (1) 棒 AC の自由物体図を描け。
- (2) すべての反力を求めよ。
- (3) 棒 AB と棒 BC の垂直応力を求めよ。
- (4) 点 B の変位を求めよ。

Question 2 As shown in Fig. 2.1, a bar is supported by rigid walls at both ends. The bar consists of two materials. Young's modulus, the linear expansion coefficient, the cross-sectional area and the length of the bar AB are denoted as E_1 , α_1 , S and L, respectively. Those of the bar BC are denoted as E_2 , α_2 , S and L, respectively. The bar AB and BC are connected at point B. Answer the following questions when the bar is loaded by a concentrated load P at point B together with thermal change ΔT .

- (1) Illustrate the free body diagram of the bar AC.
- (2) Determine all reactions.
- (3) Determine the normal stresses of the bar AB and BC.
- (4) Determine the displacement of point B.

Fig. 2.1

2022年10月,2023年4月入学(October 2022 and April 2023 Admission) 広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題 Graduate School of Advanced Science and Engineering(Master's Course)、Hiroshima University

材料力学 Material and Structural Mechanics

1 4 2

問題 3 Fig. 3.1 に示す点 C に集中荷重 P が作用 ている門型ラーメンを考える。各部材の長さおよび曲げ剛性をそれぞれ L 、EI とする。以下の問いに答えよ。

L

- (1) 門型ラーメンの自由物体図を描け。
- (2) 全ての支点反力を求めよ。
- (3) 曲げモーメント分布を求め、それを図示せよ。
- (4) 点 C での荷重方向の変位を求めよ。

Question 3 As shown in Fig. 3.1, a rigid frame is subjected to a concentrated load P at point C. The length and flexural rigidity of each member are L and EI, respectively. Answer the following questions.

- (1) Draw free body diagram of the rigid frame.
- (2) Determine all the reactions.

Fig. 3.1