広島大学大学院先進理工系科学研究科博士課程前期(外国人留学生特別選抜) 専門科目入学試験問題

問題用紙

Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University Entrance Examination Booklet (Special Selection for International Students)

Question Sheets

(2024年1月25日実施 / January 25, 2024)

試験 科目 Subject	輸送機器環境工学 (専門科目 I) Vehicle and Environmental Systems Engineering I	プログラム Program	輸送・環境システムプログラム Transportation and Environmental Systems Program	受験番号 Examinee's Number	M
---------------------	--	------------------	--	------------------------------	---

試験時間:9時00分~12時00分 (Examination Time: From 9:00 to 12:00)

受験上の注意事項 (1) (2) (4) (5) (6) (7) (8) (9) (1) There are 8 question sheets and 7 answer sheets including a front sheet.

広島大学大学院先進理工系科学研究科博士課程前期(外国人留学生特別選抜) 専門科目入学試験問題

Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University

Entrance Examination Booklet (Special Selection for International Students)

(2024年1月25日実施/January 25, 2024)

試験	輸送機器環境工学
科目	(専門科目 I)
Subject	Vehicle and Environmental
	Systems Engineering I

輸送・環境システムプログラム Transportation and Environmental Systems Program	受験番号 Examinee's Number
---	------------------------------

数学 Mathematics

問題1 以下の問いに答えよ。

- (1) 不定積分 $\int x(\log x)^2 dx$ を求めよ。
- (2) 定積分 $\int_{-\pi/2}^{\pi/2} \cos x \cos 2x \, dx$ を求めよ。
- (3) 常微分方程式 $\frac{dy}{dx} = 3\frac{y^2}{r^2}$ の一般解を求めよ。

(4)
$$\mathbf{A} = \begin{bmatrix} -3 & -2 & -4 \\ 4 & 3 & 4 \\ 2 & 2 & 3 \end{bmatrix}$$
 のとき、 \mathbf{A} の固有値を求めよ。

(5) $F = e^{yz} i - e^{zx} j + xyk$ のとき、 $\nabla \times F$ を求めよ。ただし、i, j, k は x, y, z 軸方向の単位ベクトルである。

Question 1 Answer the following questions.

- (1) Find the indefinite integral $\int x(\log x)^2 dx$.
- (2) Find the integral $\int_{-\pi/2}^{\pi/2} \cos x \cos 2x \, dx$.
- (3) Find the general solution for the ordinary differential equation $\frac{dy}{dx} = 3\frac{y^2}{x^2}$
- (4) When $\mathbf{A} = \begin{bmatrix} -3 & -2 & -4 \\ 4 & 3 & 4 \\ 2 & 2 & 3 \end{bmatrix}$, find the eigenvalues of \mathbf{A} .
- (5) When $F = e^{yz} i e^{zx} j + xyk$, find $\nabla \times F$, where i, j and k show the unit vectors in x, y and z axis directions.

広島大学大学院先進理工系科学研究科博士課程前期(外国人留学生特別選抜) 専門科目入学試験問題 Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University Entrance Examination Booklet (Special Selection for International Students)

(2024年1月25日実施 / January 25, 2024)

試験	輸送機器環境工学
科目	(専門科目 I)
	Vehicle and Environmental
Subject	Systems Engineering I

	輸送・環境システムプログラム
プログラム	Transportation and
Program	Environmental Systems
	Program

受験番号 Examinee's Number	
------------------------------	--

数学 Mathematics

問題 2 Fig. 2.1 に示すように,S を閉曲線 C によって囲まれた面積とするとき,導関数を有する任意関数 $F(x,y)=F_x(x,y)i+F_y(x,y)j$ に対して,2 次元の Gauss の発散定理

$$\iint_{S} \nabla \cdot \mathbf{F} \, dS = \int_{C} \mathbf{F} \cdot \mathbf{n} \, dl \tag{2.1}$$

が成り立つ。ただし, $n=n_xi+n_yj$ は C 上の外向き単位法線ベクトル,dl は C の線素である。また,i,j はそれぞれ x,y 軸方向の単位ベクトルである。Fig. 2.2 に示すように,曲線 C_1 ,および,直線 y=0 で囲まれた平面を考える。以下の問いに答えよ。

(1) 曲線 C_1 上の点の位置ベクトル $r_1(x,y)=xi+yj$ が (2.2) 式で与えられるとき,F=yj として (2.1) 式右辺の積分を行い,平面の面積 S を求めよ。

$$x = \frac{1}{2}(u - \sin u), \ y = \frac{1}{2}(1 - \cos u) \ (0 \le u \le 2\pi)$$
 (2.2)

(2) 平面上の任意の点の位置ベクトル $\mathbf{r}(x,y) = x\mathbf{i} + y\mathbf{j}$ が (2.3) 式で表されるとき、平面上の面素 $dS = \left| \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right| du dv$ を求めよ。

$$x = (u - \sin u)v, \ y = (1 - \cos u)v \ \left(0 \le u \le 2\pi, \ 0 \le v \le \frac{1}{2}\right)$$
 (2.3)

(3) 小問(2)の結果をもとに(2.1)式左辺の積分を行い,(2.1)式が成り立つことを示せ。

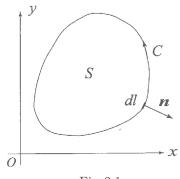


Fig. 2.1

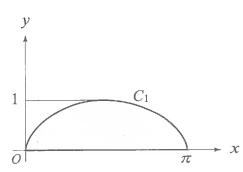


Fig. 2.2

広島大学大学院先進理工系科学研究科博士課程前期(外国人留学生特別選抜) 専門科目入学試験問題

Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University

Entrance Examination Booklet (Special Selection for International Students)

(2024年1月25日実施 / January 25, 2024)

試験 科目 Subject \$\fint\text{\$\shi\$\text{\text{\text{SWRRIGIT}}\text{\text{\$\gequiv}}}\$ \text{\$\shi\$\text{\text{\text{\text{\text{\text{\$\gequiv}}}}}\$ \text{\text{\$\gequiv}}\$ \text{\$\shi\$\text{\text{\$\gequiv}}\$} \text{\text{\$\gequiv}}\$ \text{\text{\$\gequiv}} \text{\text{\$\gequiv}}\$ \text{\text{\$\gequiv}}\$ \text{\text{\$\gequiv}}\$ \text{\text{\$\gequiv}}\$ \text{\text{\$\gequiv}}\$ \text{\text{\$\gequiv}}\$ \text{\text{\$\gequiv}}\$ \text{\text{\$\gequiv}}\$ \text{\text{\$\gequiv}}\$ \text{\text{\$\gequiv}}\$ \qq \qu
--

プログラム Program	輸送・環境システムプログラム Transportation and Environmental Systems Program	受験番号 Examinæ's Number	М
------------------	--	-----------------------------	---

数学 Mathematics

As shown in Fig. 2.1, when S is an area surrounded by a closed curve C, the two-dimensional divergence theorem of Gauss

$$\iint_{S} \nabla \cdot \mathbf{F} \, dS = \int_{C} \mathbf{F} \cdot \mathbf{n} \, dl \tag{2.1}$$

holds for the arbitrary vector function $F(x,y) = F_x(x,y)i + F_y(x,y)j$ with continuous derivatives, where $n = n_x i + n_y j$ is an outward unit normal vector on C, and dl is a line element of C. Also, i and j are unit vectors in x and y axes respectively. Fig. 2.2 shows a plane surrounded by the curve C_1 and the line y=0. Answer the following questions.

(1) When the coordinates of the position vector $r_1(x, y) = xi + yi$ at an arbitrary point on the curve C_1 are given

in eq. (2.2) and we put eq. (2.1). $x = \frac{1}{2}(u - \sin \frac{1}{2}(1 - \cos \frac{1}{2}))$ (2.2)

Find the surface element $dS = \left| \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right|$ when the coordinates of the position vector xi + yjat an arbitrary point on the surface are expressed in eq. (2.3).

$$x \qquad \sin \qquad \qquad 2\pi, \ 0 \qquad \frac{1}{2}$$
 (2.3)

(3) Show that eq. (2.1) holds by performing the integration on the left side of eq. subquestion (2).

based on the result of the

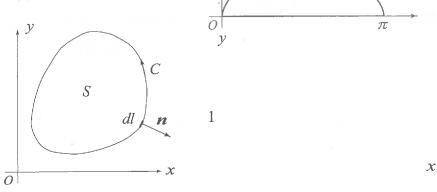


Fig. 2.1

Fig. 2.2

広島大学大学院先進理工系科学研究科博士課程前期(外国人留学生特別選抜) 専門科目入学試験問題

Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University Entrance Examination Booklet (Special Selection for International Students)

(2024年1月25日実施 / January 25, 2024)

	計験	輸送機器環境工学
i	科目	(専門科目 I)
1		Vehicle and Environmental
	Subject	Systems Engineering I

<u> </u>	輸送・環境システムプログラム
プログラム	Transportation and
Program	Environmental Systems
_	Program

数学

Mathematics

問題 3 x(t) に関する常微分方程式

$$x''(t) + 4x'(t) + 5x(t) = f(t), \quad x(0) = x(\pi/2) = 0$$
(3.1)

について以下の問いに答えよ。ここで、f(t) は t に関する任意の関数である。

- (1) (3.1) 式の解 x(t) を求めよ。
- (2) f(t) = 1 のとき、x(t) を求めよ。

Question 3 Answer the following questions for the ordinary differential equation with respect to x(t):

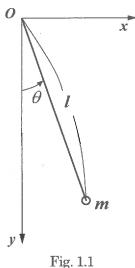
$$x''(t) + 4x'(t) + 5x(t) = f(t), \quad x(0) = x(\pi/2) = 0.$$
(3.1)

Here, f(t) is an arbitrary function with respect to t.

- (1) Find the solution x(t) for eq. (3.1).
- (2) Find the solution x(t) when f(t) = 1.

広島大学大学院先進理工系科学研究科博士課程前期(外国人留学生特別選抜) 専門科目入学試験問題 Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University Entrance Examination Booklet (Special Selection for International Students)

(2024年1月25日実施 / January 25, 2024)


1 FA	輸送機器環境工学
科目	(専門科目 I)
1	Vehicle and Environmental
Subject	Systems Engineering I

輸送・環境システムプログラム プログラム Transportation and Program Environmental Systems Program	受験番号 Examinee's Number	M		
---	------------------------------	---	--	--

力学 **Dynamics**

問題 1 質量m の物体が長さl の索で吊り下げられた振り子がある。索の重さは無視できる。傾角 θ は微小と仮定する。 重力加速度をgとするとき、次の問いに答えよ。

- (1) 物体が質点であるとき、傾角 heta に関する運動方程式を求めよ。座標系は、Fig. 1.1 に従うものとする (y は鉛直下 向きを正とする)。
- (2) 物体が半径 a の球であるとき、傾角 θ に関する運動方程式を求めよ。座標系は、Fig. 1.2 に従うものとする (y) は 鉛直下向きを正とする)。
- (3) 物体が質点と球の場合のそれぞれについて、振り子の運動周期を求めよ。さらに、それらの式を用いて、a<<1の とき、運動周期に及ぼすalの影響について議論せよ。

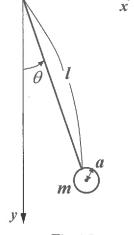


Fig. 1.2

Question 1 There is a pendulum of an object with mass m suspended by a cable of length l. The weight of the cable is negligible. It is assumed that the inclination angle θ is negligibly small. The gravity acceleration is denoted by g. Then, answer the following questions.

- (1) When the object is a mass point, find the equation of motion for the inclination angle θ . The coordinate system is shown as Fig. 1.1 (v is positive in the vertical downward direction).
- (2) When the object is a sphere with radius a, find the equation of motion for the inclination angle θ . The coordinate system is shown as Fig. 1.2 (y is positive in the vertical downward direction).

	-			
	(A) Di 1 4	· - 4 - C 41	المستاسم الأسم عشلتك سيادة	 who abstract diamon that
- 1	1			ę.
***	AT THE STATE OF TH			
				i
4				
1				1
1.				4

広島大学大学院先進理工系科学研究科博士課程前期(外国人留学生特別選抜) 専門科目入学試験問題 Graduate School of Advanced Science and Engineering (Master's Course). Hiroshima University

+A\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(2024年1月25日実施 / January 25, 2024)			
	b			
	Program			
72.7				
		у		
1				
*)				
		_		

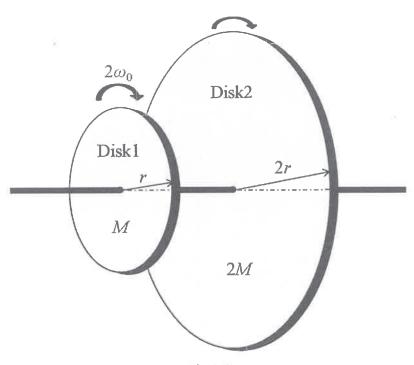


Fig. 2. 1

//- ~ °	トキュ を生 ノ	C	
	*		
-14			

広島大学大学院先進理工系科学研究科博士課程前期(外国人留学生特別選抜) 専門科目入学試験問題

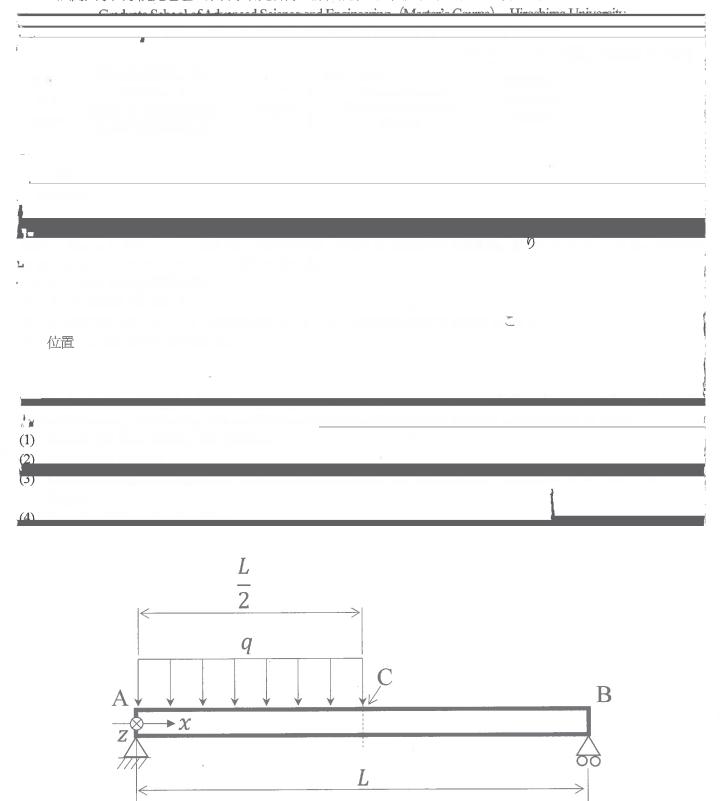
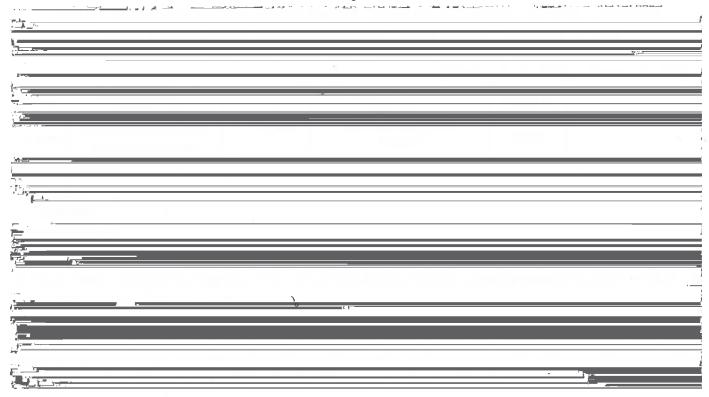


Fig. 3.1

広島大学大学院先進理工系科学研究科博士課程前期(外国人留学生特別選抜) 専門科目入学試験問題


問題用紙

Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University Entrance Examination Booklet (Special Selection for International Students)

Question Sheets

(2024年1月25日実施 / January 25, 2024)

試験	輸送機器環境工学	プログラム	輸送・環境システムプログラム Transportation and	受験番号	**	
TO THE REAL PROPERTY.						
			_			
(1) . (2)	· · ·		ŋ			
(3) (4)	<u> </u>					1
(b)	¥ Ya	8				ad
(7)) ,) ₀		l _i	
<u> </u>			0			_
	'n					
_						
1.	Į.					

